久久久欧美日韩免费观看|国产又粗又硬又长又爽|无码不卡视频在线观看|欧美色一区二区三区四区|久草新视频在线观看12|亚洲国产精品人人做人人爱

Sorry, you are not login!
VIP members can check the contents after login.
Click to login

  • TOP
  • Moblie
    All Prompt Messages

    Tradesns Foreign Trade Community
    Current page location: Home Page > Article > 太陽能應(yīng)用
    Article author
    Xiao Frederick
    Concern
    Add friends
    Station news
    Selected articles of the author
    View more>
    太陽能應(yīng)用
    Browse volume:210 | Reply:1 | Release time:2008-12-30 11:48:51
    1.1 ?太陽能簡介

      太陽能是太陽內(nèi)部連續(xù)不斷的核聚變反應(yīng)過程產(chǎn)生的能量。地球軌道上的平均太陽輻射強度為1367kw/m2。地球赤道的周長為40000km,從而可計算出,地球獲得的能量可達173,000TW。在海平面上的標(biāo)準(zhǔn)峰值強度為1kw/m2,地球表面某一點24h的年平均輻射強度為0.20kw/m2,相當(dāng)于有102,000TW 的能量,人類依賴這些能量維持生存,其中包括所有其他形式的可再生能源(地?zé)崮苜Y源除外)雖然太陽能資源總量相當(dāng)于現(xiàn)在人類所利用的能源的一萬多倍,但太陽能的能量密度低,而且它因地而異,因時而變,這是開發(fā)利用太陽能面臨的主要問題。太陽能的這些特點會使它在整個綜合能源體系中的作用受到一定的限制。

      太陽是一個巨大、久遠、無盡的能源。盡管太陽輻射到地球大氣層的能量僅為其總輻射能量(約為3.75×1026W)的22億分之一,但已高達173,000TW,也就是說太陽每秒鐘照射到地球上的能量就相當(dāng)于500萬噸煤。下圖是地球上的能流圖。從圖上可以看出,地球上的風(fēng)能、水能、海洋溫差能、波浪能和生物質(zhì)能以及部分潮汐能都是來源于太陽;即使是地球上的化石燃料(如煤、石油、天然氣等)從根本上說也是遠古以來貯存下來的太陽能,所以廣義的太陽能所包括的范圍非常大,狹義的太陽能則限于太陽輻射能的光熱、光電和光化學(xué)的直接轉(zhuǎn)換。

    地球上的能流圖(單位106MW)

      太陽能既是一次能源,又是可再生能源。它資源豐富,既可免費使用,又無需運輸,對環(huán)境無任何污染。但太陽能也有兩個主要缺點:一是能流密度低;二是其強度受各種因素(季節(jié)、地點、氣候等)的影響不能維持常量。這兩大缺點大大限制了太陽能的有效利用。

      人類對太陽能的利用有著悠久的歷史。我國早在兩千多年前的戰(zhàn)國時期就知道利用鋼制四面鏡聚焦太陽光來點火;利用太陽能來干燥農(nóng)副產(chǎn)品。發(fā)展到現(xiàn)代,太陽能的利用已日益廣泛,它包括太陽能的光熱利用,太陽能的光電利用和太陽能的光化學(xué)利用等。

    1.2 ?太陽的構(gòu)造

      太陽是一個熾熱的氣態(tài)球體,它的直徑約為1.39×106km,質(zhì)量約為2.2×l027t,為地球質(zhì)量的3.32×105倍,體積則比地球大1.3×106倍,平均密度為地球的1/4。其主要組成氣體為氫(約80%)和氦(約19%)。由于太陽內(nèi)部持續(xù)進行著氫聚合成氦的核聚變反應(yīng),所以不斷地釋放出巨大的能量,并以輻射和對流的方式由核心向表面?zhèn)鬟f熱量,溫度也從中心向表面逐漸降低。由核聚變可知,氫聚合成氦在釋放巨大能量的同時,每1g質(zhì)量將虧損0.00729。根據(jù)目前太陽產(chǎn)生核能的速率估算,其氫的儲量足夠維持600億年,因此太陽能可以說是用之不竭的。

      太陽的結(jié)構(gòu)如上圖所示。在太陽平均半徑23%(0.23R) 的區(qū)域內(nèi)是太陽的內(nèi)核,其溫度約為8×106~4×107K,密度為水的80~100倍,占太陽全部質(zhì)量的40%,總體積的15%。這部分產(chǎn)生的能量占太陽產(chǎn)生總能量的90%。氫聚合時放出γ射線,當(dāng)它經(jīng)過較冷區(qū)域時由于消耗能量,波長增長,變成X射線或紫外線及可見光。從0.23~0.7R的區(qū)域稱為“輻射輸能區(qū)”,溫度降到1.3×105K,密度下降為0.079g/ cm3。0.7~1.0R之間稱為“對流區(qū)”,溫度下降到5×103K,密度下降到10-8g/cm3。 太陽的外部是一個光球?qū)?,它就是人們?nèi)庋鬯吹降奶柋砻?,其溫度?762K,厚約500km,密度為10-6g/cm3,它是由強烈電離的氣體組成,太陽能絕大部分輻射都是由此向太空發(fā)射的。光球外面分布著不僅能發(fā)光,而且?guī)缀跏峭该鞯奶柎髿猓?稱之為“反變層”,它是由極稀薄的氣體組成,厚約數(shù)百公里,它能吸收某些可見光的光譜輻射。“反變層”的外面是太陽大氣上層,稱之為“色球?qū)印保窦s1~1.5×104km,大部分由氫和氦組成?!吧?qū)印蓖馐巧烊胩盏你y白色日冕,溫度高達1百萬度,高度有時達幾十個太陽半徑。

      從太陽的構(gòu)造可見,太陽并不是一個溫度恒定的黑體,而是一個多層的有不同波長發(fā)射和吸收的輻射體。不過在太陽能利用中通常將它視為一個溫度為6000K,發(fā)射波長為0.3~3μm的黑體。

    2.1 ?太陽常數(shù)

      晝夜是由于地球自轉(zhuǎn)而產(chǎn)生的,而季節(jié)是由于地球的自轉(zhuǎn)軸與地球圍繞太陽公轉(zhuǎn)的軌道的轉(zhuǎn)軸呈23°27′的夾角而產(chǎn)生的。地球每天繞著通過它本身南極和北極的“地軸” 自西向東自轉(zhuǎn)一周。每轉(zhuǎn)一周為一晝夜,所以地球每小時自轉(zhuǎn)15°。地球除自轉(zhuǎn)外還循偏心率很小的橢圓軌道每年繞太陽運行一周。地球自轉(zhuǎn)軸與公轉(zhuǎn)軌道面的法線始終成23.5°。地球公轉(zhuǎn)時自轉(zhuǎn)軸的方向不變,總是指向地球的北極。因此地球處于運行軌道的不同位置時,太陽光投射到地球上的方向也就不同,于是形成了地球上的四季變化(見下圖)。每天中午時分,太陽的高度總是最高。在熱帶低緯度地區(qū)(即在赤道南北緯度23°27′之間的地區(qū)),一年中太陽有兩次垂直入射,在較高緯度地區(qū),太陽總是靠近赤道方向。在北極和南極地區(qū)(在南北半球大于90°~23°27′),冬季太陽低于地平線的時間長,而夏季則高于地平線的時間長。

    地球繞太陽運行的示意圖

      由于地球以橢圓形軌道繞太陽運行,因此太陽與地球之間的距離不是一個常數(shù),而且一年里每天的日地距離也不一樣。眾所周知,某一點的輻射強度與距輻射源的距離的平方成反比,這意味著地球大氣上方的太陽輻射強度會隨日地間距離不同而異。然而,由于日地間距離太大(平均距離為1.5 x 108km),所以地球大氣層外的太陽輻射強度幾乎是一個常數(shù)。因此人們就采用所謂 “太陽常數(shù)”來描述地球大氣層上方的太陽輻射強度。它是指平均日地距離時,在地球大氣層上界垂直于太陽輻射的單位表面積上所接受的太陽輻射能。近年來通過各種先進手段測得的太陽常數(shù)的標(biāo)準(zhǔn)值為1353w/m2。一年中由于日地距離的變化所引起太陽輻射強度的變化不超過上3.4%。

    2.2 ?到達地面的太陽輻射

      太陽照射到地平面上的輻射或稱“日射”由兩部分組成——直達日射和漫射日射。太陽輻射穿過大氣層而到達地面時,由于大氣中空氣分子、水蒸氣和塵埃等對太陽輻射的吸收、反射和散射,不僅使輻射強度減弱,還會改變輻射的方向和輻射的光譜分布。因此實際到達地面的太陽輻射通常是由直射和漫射兩部分組成。直射是指直接來自太陽其輻射方向不發(fā)生改變的輻射;漫射則是被大氣反射和散射后方向發(fā)生了改變的太陽輻射,它由三部分組成:太陽周圍的散射 (太陽表面周圍的天空亮光),地平圈散射(地平圈周圍的天空亮光 或暗光),及其他的天空散射輻射。另外,非水平面也接收來自地面的反射輻射。直達日射、漫射日射和反射日射的總和即為總?cè)丈浠颦h(huán)球日射??梢砸揽客哥R或反射器來聚焦直達日射。如果聚光率很高, 就可獲得高能量密度,但卻損耗了漫射日射。如果聚光率較低,也可以對部分太陽周圍的漫射日射進行聚光。漫射日射的變化范圍很大,當(dāng)天空晴朗無云時,漫射日射為總?cè)丈涞?0%。但當(dāng)天空 烏云密布見不到太陽時,總?cè)丈鋭t等于漫射日射。因此聚式收集 器采集的能量通常要比非聚式收集器采集的能量少得多。反射日射一般都很弱,但當(dāng)?shù)孛嬗斜└采w時,垂直面上的反射日射可達總?cè)丈涞?0%。

      到達地面的太陽輻射主要受大氣層厚度的影響。大氣層越厚,對太陽輻射的吸收、反射和散射就越嚴(yán)重,到達地面的太陽輻射就越少。此外大氣的狀況和大氣的質(zhì)量對到達地面的太陽輻射也有影響。顯然太陽輻射穿過大氣層的路徑長短與太陽輻射的 方向有關(guān)。參看下圖,A為地球海平面上的一點,當(dāng)太陽在天頂位置S時,太陽輻射穿過大氣層到達A點的路徑為OA。城陽位于S點時,其穿過大氣層到達A點的路徑則為0A。 O,A與 OA之比就稱之為“大氣質(zhì)量”。它表示太陽輻射穿過地球大氣的路徑與太陽在天頂方向垂直入射時的路徑之比,通常以符號m表示,并設(shè)定標(biāo)準(zhǔn)大氣壓和O℃時海平面上太陽垂直入射時,大氣質(zhì)量m=1。從下圖可知:

    式中,h為太陽的高度角。 大氣質(zhì)量示意圖

      顯然地球上不同地區(qū)、不同季節(jié)、不同氣象條件下到達地面的太陽輻射強度都是不相同的。下表給出了熱帶、溫帶和比較寒冷地帶的太陽平均輻射強度。

    不同地區(qū)太陽平均輻射強度

    地區(qū)太陽平均輻射強度kwh/(m2xd)w/m2熱帶、沙漠5-6210-250溫帶3-5130-210陽光較少地區(qū)(北歐)2-380-130

      通常根據(jù)各地的地理和氣象情況已將到達地面的太陽輻射強度制成各種可供工程使用的圖表,它們不但對太陽能利用,而且對建筑物的采暖、空調(diào)設(shè)計也是至關(guān)重要的數(shù)據(jù)。

    2.3 ?波長分布

      太陽能的波長分布可以用一個黑體輻射來模擬,黑體的溫度為5800K。太陽能波長分布在紫外光、可見光和紅外光波段。這些波段受大氣衰減的影響程度各不相同。可見光輻射的大部分可到達地面,但是上層大氣中的臭氧卻吸收了大部分紫外光輻射。

      近年來,由于臭氧層變薄,特別是南極和北極地區(qū),到達地面的紫外光輻射越來越多。入射的紅外光輻射,有一部分被二氧化碳、水蒸氣和其他氣體吸收,而在夜間來自地球表面的較長波長的紅外輻射大部分則傳到了外空。這些溫室氣體在上層大氣中的積累,可能會使大氣吸收能力增加,從而導(dǎo)致全球氣候變暖和天氣變得多云。雖然臭氧減少對太陽能集熱器的影響甚微,但溫室效應(yīng)可能會增大散射輻射,并可能嚴(yán)重影響太陽能集熱器的作用。

    據(jù)記載,人類利用太陽能已有3000多年的歷史。將太陽能作為一種能源和動力加以利用,只有300多年的歷史。真正將太陽能作為“近期急需的補充能源”,“未來能源結(jié)構(gòu)的基礎(chǔ)”,則是近來的事。20世紀(jì)70年代以來,太陽能科技突飛猛進,太陽能利用日新月異。近代太陽能利用歷史可以從1615年法國工程師所羅門·德·考克斯在世界上發(fā)明第一臺太陽能驅(qū)動的發(fā)動機算起。該發(fā)明是一臺利用太陽能加熱空氣使其膨脹作功而抽水的機器。在1615年~1900年之間,世界上又研制成多臺太陽能動力裝置和一些其它太陽能裝置。這些動力裝置幾乎全部采用聚光方式采集陽光,發(fā)動機功率 不大,工質(zhì)主要是水蒸汽,價格昂貴,實用價值不大,大部分為太陽能愛好者個人研究制造。20世紀(jì)的100年間,太陽能科技發(fā)展歷史大體可分為七個階段,下面分別予以介紹。

      第一階段(1900-1920)

      在這一階段,世界上太陽能研究的重點仍是太陽能動力裝置,但采用的聚光方式多樣化,且開始采用平板集熱器和低沸點工質(zhì),裝置逐漸擴大,最大輸出功率達73.64kW,實用目的比較明確,造價仍然很高。建造 的典型裝置有:1901年,在美國加州建成一臺太陽能抽水裝置,采用截頭圓錐聚光器,功率:7.36kW;1902 -1908年,在美國建造了五套雙循環(huán)太陽能發(fā)動機,采用平板集熱器和低沸點工質(zhì);1913年,在埃及開羅以南建成一臺由5個拋物槽鏡組成的太陽能水泵,每個長62.5m,寬4m,總采光面積達1250m2

      第二階段(1920-1945)

      在這20多年中,太陽能研究工作處于低潮,參加研究工作的人數(shù)和研究項目大為減少,其原因與礦物燃料的大量開發(fā)利用和發(fā)生第二次世界大戰(zhàn)(1935-1945)有關(guān),而太陽能又不能解決當(dāng)時對能源的急需,因此使太陽能研究工作逐漸受到冷落。

      第三階段(1945-1965)

      在第二次世界大戰(zhàn)結(jié)束后的20年中,一些有遠見的人士已經(jīng)注意到石油和天然氣資源正在迅速減少, 呼吁人們重視這一問題,從而逐漸推動了太陽能研究工作的恢復(fù)和開展,并且成立太陽能學(xué)術(shù)組織,舉辦學(xué)術(shù)交流和展覽會,再次興起太陽能研究熱潮。 在這一階段,太陽能研究工作取得一些重大進展,比較突出的有:1955年,以色列泰伯等在第一次國際太陽熱科學(xué)會議上提出選擇性涂層的基礎(chǔ)理論,并研制成實用的黑鎳等選擇性涂層,為高效集熱器的發(fā)展創(chuàng)造了條件;1954年,美國貝爾實驗室研制成實用型硅太陽電池,為光伏發(fā)電大規(guī)模應(yīng)用奠定了基礎(chǔ)。此外,在這一階段里還有其它一些重要成果,比較突出的有: 1952年,法國國家研究中心在比利牛斯山東部建成一座功率為50kW的太陽爐。1960年,在美國佛羅里達建成世界上第一套用平板集熱器供熱的氨-水吸收式空調(diào)系統(tǒng),制冷能力為5冷噸。1961年,一臺帶有石英窗的斯特林發(fā)動機問世。在這一階段里,加強了太陽能基礎(chǔ)理論和基礎(chǔ)材料的研究,取得了如太陽選擇性涂層和硅太陽電池等技術(shù)上的重大突破。平板集熱器有了很大的發(fā)展,技術(shù)上逐漸成熟。太陽能吸收式空調(diào)的研究取得進展,建成一批實驗性太陽房。對難度較大的斯特林發(fā)動機和塔式太陽能熱發(fā)電技術(shù)進行了初步研究。

      第四階段(1965-1973)

      這一階段,太陽能的研究工作停滯不前,主要原因是太陽能利用技術(shù)處于成長階段,尚不成熟,并且投資大,效果不理想,難以與常規(guī)能源競爭,因而得不到公眾、企業(yè)和政府的重視和支持。

      第五階段(1973-1980)

      自從石油在世界能源結(jié)構(gòu)中擔(dān)當(dāng)主角之后,石油就成了左右經(jīng)濟和決定一個國家生死存亡、發(fā)展和衰退的關(guān)鍵因素,1973年10月爆發(fā)中東戰(zhàn)爭,石油輸出國組織采取石油減產(chǎn)、提價等辦法,支持中東人民的斗爭,維護本國的利益。其結(jié)果是使那些依靠從中東地區(qū)大量進口廉價石油的國家,在經(jīng)濟上遭到沉重打擊。 于是,西方一些人驚呼:世界發(fā)生了“能源危機”(有的稱“石油危機”)。這次“危機”在客觀上使人們認(rèn)識到:現(xiàn)有的能源結(jié)構(gòu)必須徹底改變,應(yīng)加速向未來能源結(jié)構(gòu)過渡。從而使許多國家,尤其是工業(yè)發(fā)達國家,重新加強了對太陽能及其它可再生能源技術(shù)發(fā)展的支持,在世界上再次興起了開發(fā)利用太陽能熱潮。1973年,美國制定了政府級陽光發(fā)電計劃,太陽能研究經(jīng)費大幅度增長,并且成立太陽能開發(fā)銀行,促進太陽能產(chǎn)品的商業(yè)化。日本在1974年公布了政府制定的“陽光計劃”,其中太陽能的研究開發(fā)項目有:太陽房 、工業(yè)太陽能系統(tǒng)、太陽熱發(fā)電、太陽電池生產(chǎn)系統(tǒng)、分散型和大型光伏發(fā)電系統(tǒng)等。為實施這一計劃,日本政府投入了大量人力、物力和財力。70年代初世界上出現(xiàn)的開發(fā)利用太陽能熱潮,對我國也產(chǎn)生了巨大影響。一些有遠見的科技人員,紛紛投身太陽能事業(yè),積極向政府有關(guān)部門提建議,出書辦刊,介紹國際上太陽能利用動態(tài);在農(nóng)村推廣應(yīng)用太陽灶 ,在城市研制開發(fā)太陽熱水器,空間用的太陽電池開始在地面應(yīng)用……。 1975年,在河南安陽召開“全國第一次太陽能利用工作經(jīng)驗交流大會”,進一步推動了我國太陽能事業(yè)的發(fā)展。這次會議之后,太陽能研究和推廣工作納入了我國政府計劃,獲得了專項經(jīng)費和物資支持。一些大學(xué)和科研院所,紛紛設(shè)立太陽能課題組和研究室,有的地方開始籌建太陽能研究所。當(dāng)時,我國也興起了開發(fā)利用太陽能的熱潮。 這一時期,太陽能開發(fā)利用工作處于前所未有的大發(fā)展時期,具有以下特點:

      各國加強了太陽能研究工作的計劃性,不少國家制定了近期和遠期陽光計劃。開發(fā)利用太陽能成為政府行為,支持力度大大加強。國際間的合作十分活躍,一些第三世界國家開始積極參與太陽能開發(fā)利用工作。

      研究領(lǐng)域不斷擴大,研究工作日益深入,取得一批較大成果,如CPC、真空集熱管、非晶硅太陽電池、 光解水制氫、太陽能熱發(fā)電等。

      各國制定的太陽能發(fā)展計劃,普遍存在要求過高、過急問題,對實施過程中的困難估計不足,希望在較短的時間內(nèi)取代礦物能源,實現(xiàn)大規(guī)模利用太陽能。例如,美國曾計劃在1985年建造一座小型太陽能示范衛(wèi)星電站,1995年建成一座500萬kW空間太陽能電站。事實上,這一計劃后來進行了調(diào)整,至今空間太陽 能電站還未升空。

      太陽熱水器、太陽電他等產(chǎn)品開始實現(xiàn)商業(yè)化,太陽能產(chǎn)業(yè)初步建立,但規(guī)模較小,經(jīng)濟效益尚不理想。

      第六階段(1980-1992)

      70年代興起的開發(fā)利用太陽能熱潮,進入80年代后不久開始落潮,逐漸進入低谷。世界上許多國家相繼大幅度削減太陽能研究經(jīng)費,其中美國最為突出。導(dǎo)致這種現(xiàn)象的主要原因是:世界石油價格大幅度回落,而太陽能產(chǎn)品價格居高不下,缺乏競爭力;太陽能技術(shù)沒有重大突破,提高效率和降低成本的目標(biāo)沒有實現(xiàn),以致動搖了一些人開發(fā)利用太陽能的信心;核電發(fā)展較快,對太陽能的發(fā)展起到了一定的抑制作用。 受80年代國際上太陽能低落的影響,我國太陽能研究工作也受到一定程度的削弱,有人甚至提出:太陽能利用投資大、效果差、貯能難、占地廣,認(rèn)為太陽能是未來能源,主張外國研究成功后我國引進技術(shù)。雖然,持這種觀點的人是少數(shù),但十分有害,對我國太陽能事業(yè)的發(fā)展造成不良影響這一階段,雖然太陽能開發(fā)研究經(jīng)費大幅度削減,但研究工作并未中斷,有的項目還進展較大,而且促使 人們認(rèn)真地去審視以往的計劃和制定的目標(biāo),調(diào)整研究工作重點,爭取以較少的投入取得較大的成果。

      第七階段(1992- 至今)

      由于大量燃燒礦物能源,造成了全球性的環(huán)境污染和生態(tài)破壞,對人類的生存和發(fā)展構(gòu)成威脅。在這樣背景下,1992年聯(lián)合國在巴西召開“世界環(huán)境與發(fā)展大會”,會議通過了《里約熱內(nèi)盧環(huán)境與發(fā)展宣言》, 《21世紀(jì)議程》和《聯(lián)合國氣候變化框架公約》等一系列重要文件,把環(huán)境與發(fā)展納入統(tǒng)一的框架,確立了 可持續(xù)發(fā)展的模式。這次會議之后,世界各國加強了清潔能源技術(shù)的開發(fā),將利用太陽能與環(huán)境保護結(jié)合在 一起,使太陽能利用工作走出低谷,逐漸得到加強。世界環(huán)發(fā)大會之后,我國政府對環(huán)境與發(fā)展十分重視,提出10條對策和措施,明確要“因地制宜地開發(fā)和推廣太陽能、風(fēng)能、地?zé)崮?、潮汐能、生物質(zhì)能等清潔能源”,制定了《中國21世紀(jì)議程》,進一步明確 了太陽能重點發(fā)展項目。1995年國家計委、國家科委和國家經(jīng)貿(mào)委制定了《新能源和可再生能源發(fā)展綱要》 (1996- 2010),明確提出我國在1996-2010年新能源和可再生能源的發(fā)展目標(biāo)、任務(wù)以及相應(yīng)的對策和措施 。這些文件的制定和實施,對進一步推動我國太陽能事業(yè)發(fā)揮了重要作用。 1996年,聯(lián)合國在津巴布韋召開“世界太陽能高峰會議”,會后發(fā)表了《哈拉雷太陽能與持續(xù)發(fā)展宣言 》,會上討論了《世界太陽能10年行動計劃》(1996- 2005),《國際太陽能公約》,《世界太陽能戰(zhàn)略規(guī)劃》等重要文件。這次會議進一步表明了聯(lián)合國和世界各國對開發(fā)太陽能的堅定決心,要求全球共同行動 ,廣泛利用太陽能。1992年以后,世界太陽能利用又進入一個發(fā)展期,其特點是:太陽能利用與世界可持續(xù)發(fā)展和環(huán)境保護緊密結(jié)合,全球共同行動,為實現(xiàn)世界太陽能發(fā)展戰(zhàn)略而努力;太陽能發(fā)展目標(biāo)明確,重點突出,措施得力,有利于克服以往忽冷忽熱、過熱過急的弊端,保證太陽能事業(yè)的長期發(fā)展;在加大太陽能研究開發(fā)力度的同時,注意科技成果轉(zhuǎn)化為生產(chǎn)力,發(fā)展太陽能產(chǎn)業(yè),加速商業(yè)化進程,擴大太陽能利用領(lǐng)域和規(guī)模,經(jīng)濟效益逐漸提高;國際太陽能領(lǐng)域的合作空前活躍,規(guī)模擴大,效果明顯。通過以上回顧可知,在本世紀(jì)100年間太陽能發(fā)展道路并不平坦,一般每次高潮期后都會出現(xiàn)低潮期,處于低潮的時間大約有45年。太陽能利用的發(fā)展歷程與煤、石油、核能完全不同,人們對其認(rèn)識差別大,反復(fù)多,發(fā)展時間長。

      這一方面說明太陽能開發(fā)難度大,短時間內(nèi)很難實現(xiàn)大規(guī)模利用;另一方面也說明太陽能利用還受礦物能源供應(yīng),政治和戰(zhàn)爭等因素的影響,發(fā)展道路比較曲折。盡管如此,從總體來看,20世紀(jì)取得的太陽能科技進步仍比以往任何一個世紀(jì)都大。

    4.1 ?太陽能采集

      太陽輻射的能流密度低,在利用太陽能時為了獲得足夠的能量,或者為了提高溫度,必須采用一定的技術(shù)和裝置(集熱器),對太陽能進行采集。集熱器按是否聚光,可以劃分為聚光集熱器和非聚光集熱器兩大類。 非聚光集熱器(平板集熱器,真空管集熱器)能夠利用太陽輻射中的直射輻射和散射輻射,集熱溫度較低;聚 光集熱器能將陽光會聚在面積較小的吸熱面上,可獲得較高溫度,但只能利用直射輻射,且需要跟蹤太陽。

      平板集熱器

      歷史上早期出現(xiàn)的太陽能裝置,主要為太陽能動力裝置,大部分采用聚光集熱器,只有少數(shù)采用平板集熱器。平板集熱器是在17世紀(jì)后期發(fā)明的,但直至1960年以后才真正進行深入研究和規(guī)?;瘧?yīng)用。在太陽能低溫利用領(lǐng)域,平板集熱器的技術(shù)經(jīng)濟性能遠比聚光集熱器好。為了提高效率,降低成本,或者為了滿足特定的使用要求,開發(fā)研制了許多種平板集熱器: 按工質(zhì)劃分有空氣集熱器和液體集熱器,目前大量使用的是液體集熱器; 按吸熱板芯材料劃分有鋼板鐵管、全銅、全鋁、銅鋁復(fù)合、不銹鋼、塑料及其它非金屬集熱器等; 按結(jié)構(gòu)劃分有管板式、扁盒式、管翅式、熱管翅片式、蛇形管式集熱器,還有帶平面反射鏡集熱器和逆平板集熱器等; 按蓋板劃分有單層或多層玻璃、玻璃鋼或高分子透明材料、透明隔熱材料集熱器等。目前,國內(nèi)外使用比較普遍的是全銅集熱器和銅鋁復(fù)合集熱器。銅翅和銅管的結(jié)合,國外一般采用高頻焊,國內(nèi)以往采用介質(zhì)焊,199S年我國也開發(fā)成功全銅高頻焊集熱器。1937年從加拿大引進銅鋁復(fù)合生產(chǎn) 線,通過消化吸收,現(xiàn)在國內(nèi)已建成十幾條銅鋁復(fù)合生產(chǎn)線。 為了減少集熱器的熱損失,可以采用中空玻璃、聚碳酸酯陽光板以及透明蜂窩等作為蓋板材料,但這些 材料價格較高,一時難以推廣應(yīng)用。

      真空管集熱器

      為了減少平板集熱器的熱損,提高集熱溫度,國際上70年代研制成功真空集熱管,其吸熱體被封閉在高真空的玻璃真空管內(nèi),大大提高了熱性能。將若干支真空集熱管組裝在一起,即構(gòu)成真空管集熱器,為了增加太陽光的采集量,有的在真空集熱管的背部還加裝了反光板。真空集熱管大體可分為全玻璃真空集熱管,玻璃-U型管真空集熱管,玻璃。金屬熱管真空集熱管,直通式真空集熱管和貯熱式真空集熱管。最近,我國還研制成全玻璃熱管真空集熱管和新型全玻璃直通式真空集 熱管。我國自1978年從美國引進全玻璃真空集熱管的樣管以來,經(jīng)20多年的努力,我國已經(jīng)建立了擁有自主知識產(chǎn)權(quán)的現(xiàn)代化全玻璃真空集熱管的產(chǎn)業(yè),用于生產(chǎn)集熱管的磁控濺射鍍膜機在百臺以上,產(chǎn)品質(zhì)量達世 界先進水平,產(chǎn)量雄居世界首位。我國自80年代中期開始研制熱管真空集熱管,經(jīng)過十幾年的努力,攻克了熱壓封等許多技術(shù)難關(guān),建立了擁有全部知識產(chǎn)權(quán)的熱管真空管生產(chǎn)基地,產(chǎn)品質(zhì)量達到世界先進水平,生產(chǎn)能力居世界首位。 目前,直通式真空集熱管生產(chǎn)線正在加緊進行建設(shè),產(chǎn)品即將投放市場。

      聚光集熱器

      聚光集熱器主要由聚光器、吸收器和跟蹤系統(tǒng)三大部分組成。按照聚光原理區(qū)分,聚光集熱器基本可分為反射聚光和折射聚光兩大類,每一類中按照聚光器的不同又可分為若干種。為了滿足太陽能利用的要求, 簡化跟蹤機構(gòu),提高可靠性,降低成本,在本世紀(jì)研制開發(fā)的聚光集熱器品種很多,但推廣應(yīng)用的數(shù)量遠比平板集熱器少,商業(yè)化程度也低。 在反射式聚光集熱器中應(yīng)用較多的是旋轉(zhuǎn)拋物面鏡聚光集熱器(點聚焦)和槽形拋物面鏡聚光集熱器 (線聚焦)。前者可以獲得高溫,但要進行二維跟蹤;后者可以獲得中溫,只要進行一維跟蹤。這兩種聚光集熱 器在本世紀(jì)初就有應(yīng)用,幾十年來進行了許多改進,如提高反射面加工精度,研制高反射材料,開發(fā)高可靠性 跟蹤機構(gòu)等,現(xiàn)在這兩種拋物面鏡聚光集熱器完全能滿足各種中、高溫太陽能利用的要求,但由于造價高,限制了它們的廣泛應(yīng)用。

      70年代,國際上出現(xiàn)一種“復(fù)合拋物面鏡聚光集熱器”(CPC),它由二片槽形拋物面反射鏡組成,不需要跟蹤太陽,最多只需要隨季節(jié)作稍許調(diào)整,便可聚光,獲得較高的溫度。其聚光比一般在10以下,當(dāng)聚光比在3以下時可以固定安裝,不作調(diào)整。當(dāng)時,不少人對CPC評價很高,甚至認(rèn)為是太陽能熱利用技術(shù)的一次重大突破,預(yù)言將得到廣泛應(yīng)用。但幾十年過去了,CPC仍只是在少數(shù)示范工程中得到應(yīng)用,并沒有象平板集 熱器和真空管集熱器那樣大量使用。我國不少單位在七八十年代曾對CPC進行過研制,也有少量應(yīng)用,但現(xiàn)在基本都已停用。

      其它反射式聚光器還有圓錐反射鏡、球面反射鏡、條形反射鏡、斗式槽形反射鏡、平面。拋物面鏡聚光器等。此外,還有一種應(yīng)用在塔式太陽能發(fā)電站的聚光鏡--定日鏡。定日鏡由許多平面反射鏡或曲面反射鏡組成,在計算機控制下這些反射鏡將陽光都反射至同一吸收器上,吸收器可以達到很高的溫度,獲得很大的能量。

      利用光的折射原理可以制成折射式聚光器,歷史上曾有人在法國巴黎用二塊透鏡聚集陽光進行熔化金屬的表演。有人利用一組透鏡并輔以平面鏡組裝成太陽能高溫爐。顯然,玻璃透鏡比較重,制造工藝復(fù)雜,造價高,很難做得很大。所以,折射式聚光器長期沒有什么發(fā)展。70年代,國際上有人研制大型菲涅耳透鏡,試圖用于制作太陽能聚光集熱器。菲涅耳透鏡是平面化的聚光鏡,重量輕,價格比較低,也有點聚焦和線聚焦之分,一般由有機玻璃或其它透明塑料制成,也有用玻璃制作的,主要用于聚光太陽電池發(fā)電系統(tǒng)。

      我國從70年代直至90年代,對用于太陽能裝置的菲涅耳透鏡開展了研制。有人采用模壓方法加工大面 積的柔性透明塑料菲涅耳透鏡,也有人采用組合成型刀具加工直徑1.5m的點聚焦菲涅耳透鏡,結(jié)果都不大理想。近來,有人采用模壓方法加工線性玻璃菲涅耳透鏡,但精度不夠,尚需提高。 還有兩種利用全反射原理設(shè)計的新型太陽能聚光器,雖然尚未獲得實際應(yīng)用,但具有一定啟發(fā)性。一種是光導(dǎo)纖維聚光器,它由光導(dǎo)纖維透鏡和與之相連的光導(dǎo)纖維組成,陽光通過光纖透鏡聚焦后由光纖傳至使 用處。另一種是熒光聚光器,它實際上是一種添加熒光色素的透明板(一般為有機玻璃),可吸收太陽光中與熒光吸收帶波長一致的部分,然后以比吸收帶波長更長的發(fā)射帶波長放出熒光。放出的熒光由于板和周圍介質(zhì)的差異,而在板內(nèi)以全反射的方式導(dǎo)向平板的邊緣面,其聚光比取決于平板面積和邊緣面積之比,很容易 達到10一100,這種平板對不同方向的入射光都能吸收,也能吸收散射光,不需要跟蹤太陽。

    4.2 ?太陽能轉(zhuǎn)換

      太陽能是一種輻射能,具有即時性,必須即時轉(zhuǎn)換成其它形式能量才能利用和貯存。將太陽能轉(zhuǎn)換成不同形式的能量需要不同的能量轉(zhuǎn)換器,集熱器通過吸收面可以將太陽能轉(zhuǎn)換成熱能,利用光伏效應(yīng)太陽電池可以將太陽能轉(zhuǎn)換成電能,通過光合作用植物可以將太陽能轉(zhuǎn)換成生物質(zhì)能,等等。原則上,太陽能可以直接或間接轉(zhuǎn)換成任何形式的能量,但轉(zhuǎn)換次數(shù)越多,最終太陽能轉(zhuǎn)換的效率便越低。

      太陽能-熱能轉(zhuǎn)換

      黑色吸收面吸收太陽輻射,可以將太陽能轉(zhuǎn)換成熱能,其吸收性能好,但輻射熱損失大,所以黑色吸收面不是理想的太陽能吸收面。選擇性吸收面具有高的太陽吸收比和低的發(fā)射比,吸收太陽輻射的性能好,且輻射熱損失小,是比較理想的太陽能吸收面。這種吸收面由選擇性吸收材料制成,簡稱為選擇性涂層。它是在本世紀(jì)40年代提出的,1955年達到實用要求,70年代以后研制成許多新型選擇性涂層并進行批量生產(chǎn)和推廣應(yīng)用,目前已研制成上百種選擇性涂層。我國自70年代開始研制選擇性涂層,取得了許多成果,并在太陽集熱器上廣泛使用,效果十分顯著。

      太陽能-電能轉(zhuǎn)換

      電能是一種高品位能量,利用、傳輸和分配都比較方便。將太陽能轉(zhuǎn)換為電能是大規(guī)模利用太陽能的重要技術(shù)基礎(chǔ),世界各國都十分重視,其轉(zhuǎn)換途徑很多,有光電直接轉(zhuǎn)換,有光熱電間接轉(zhuǎn)換等。這里重點介紹光電直接轉(zhuǎn)換器件--太陽電池。世界上,1941年出現(xiàn)有關(guān)硅太陽電池報道,1954年研制成效率達6%的單晶硅太陽電池,1958年太陽電池應(yīng)用于衛(wèi)星供電。在70年代以前,由于太陽電池效率低,售價昂貴,主要應(yīng)用在空間。70年代以后,對太陽電池材料、結(jié)構(gòu)和工藝進行了廣泛研究,在提高效率和降低成本方面取得較大進展,地面應(yīng)用規(guī)模逐漸擴大,但從大規(guī)模利用太陽能而言,與常規(guī)發(fā)電相比,成本仍然大高。

      目前,世界上太陽電他的實驗室效率最高水平為:單晶硅電池24%(4cm2),多晶硅電池18.6%(4cm2), InGaP/GaAs雙結(jié)電池30.28%(AM1),非晶硅電池14.5%(初始)、12.8(穩(wěn)定),碲化鎘電池15.8%, 硅帶電池14.6%,二氧化鈦有機納米電池10.96%。

      我國于1958年開始太陽電池的研究,40多年來取得不少成果。目前,我國太陽電他的實驗室效率最高水平為:單晶硅電池20.4%(2cm×2cm),多晶硅電池14.5%(2cm×2cm)、12%(10cm×10cm),GaAs電池 20.1%(lcm×cm),GaAs/Ge電池19.5%(AM0),CulnSe電池9%(lcm×1cm),多晶硅薄膜電池13.6% (lcm×1cm,非活性硅襯底),非晶硅電池8.6%(10cm×10cm)、7.9%(20cm×20cm)、6.2%(30cm×30cm), 二氧化鈦納米有機電池10%(1cm×1cm)。

      太陽能-氫能轉(zhuǎn)換

      氫能是一種高品位能源。太陽能可以通過分解水或其它途徑轉(zhuǎn)換成氫能,即太陽能制氫,其主要方法如下:

      1、太陽能電解水制氫。電解水制氫是目前應(yīng)用較廣且比較成熟的方法,效率較高(75%-85%),但耗電大,用常規(guī)電制氫,從能量利用而言得不償失。所以,只有當(dāng)太陽能發(fā)電的成本大幅度下降后,才能實現(xiàn)大規(guī)模電解水制氫。

      2、太陽能熱分解水制氫。將水或水蒸汽加熱到3000K以上,水中的氫和氧便能分解。這種方法制氫效率高,但需要高倍聚光器才能獲得如此高的溫度,一般不采用這種方法制氫。

      3、太陽能熱化學(xué)循環(huán)制氫。為了降低太陽能直接熱分解水制氫要求的高溫,發(fā)展了一種熱化學(xué)循環(huán)制氫方法,即在水中加入一種或幾種中間物,然后加熱到較低溫度,經(jīng)歷不同的反應(yīng)階段,最終將水分解成氫和氧,而中間物不消耗,可循環(huán)使用。熱化學(xué)循環(huán)分解的溫度大致為900-1200K,這是普通旋轉(zhuǎn)拋物面鏡聚光器比較容易達到的溫度,其分解水的效率在17.5%-75.5%。存在的主要問題是中間物的還原,即使按99.9%-99. 99%還原,也還要作 0.1%-0.01%的補充,這將影響氫的價格,并造成環(huán)境污染。

      4、太陽能光化學(xué)分解水制氫。這一制氫過程與上述熱化學(xué)循環(huán)制氫有相似之處,在水中添加某種光敏物質(zhì)作催化劑,增加對陽光中長 波光能的吸收,利用光化學(xué)反應(yīng)制氫。日本有人利用碘對光的敏感性,設(shè)計了一套包括光化學(xué)、熱電反應(yīng)的綜 合制氫流程,每小時可產(chǎn)氫97升,效率達10%左右。

      5、太陽能光電化學(xué)電池分解水制氫。1972年,日本本多健一等人利用n型二氧化鈦半導(dǎo)體電極作陽極,而以鉑黑作陰極,制成太陽能光電化學(xué)電池,在太陽光照射下,陰極產(chǎn)生氫氣,陽極產(chǎn)生氧氣,兩電極用導(dǎo)線連接便有電流通過,即光電化學(xué)電池在太陽光的照射下同時實現(xiàn)了分解水制氫、制氧和獲得電能。這一實驗結(jié)果引起世界各國科學(xué)家高度重視, 認(rèn)為是太陽能技術(shù)上的一次突破。但是,光電化學(xué)電池制氫效率很低,僅0.4%,只能吸收太陽光中的紫外光和近紫外光,且電極易受腐蝕,性能不穩(wěn)定,所以至今尚未達到實用要求。

      6、太陽光絡(luò)合催化分解水制氫。從1972年以來,科學(xué)家發(fā)現(xiàn)三聯(lián)毗啶釘絡(luò)合物的激發(fā)態(tài)具有電子轉(zhuǎn)移能力,并從絡(luò)合催化電荷轉(zhuǎn)移反應(yīng),提出利用這一過程進行光解水制氫。這種絡(luò)合物是一種催化劑,它的作用是吸收光能、產(chǎn)生電荷分離、電荷轉(zhuǎn)移和集結(jié),并通過一系列偶聯(lián)過程,最終使水分解為氫和氧。絡(luò)合催化分解水制氫尚不成熟,研究工作正在繼續(xù)進行。

      7、生物光合作用制氫。40多年前發(fā)現(xiàn)綠藻在無氧條件下,經(jīng)太陽光照射可以放出氫氣;十多年前又發(fā)現(xiàn),蘭綠藻等許多藻類在無氧環(huán)境中適應(yīng)一段時間,在一定條件下都有光合放氫作用。目前,由于對光合作用和藻類放氫機理了解還不夠,藻類放氫的效率很低,要實現(xiàn)工程化產(chǎn)氫還有相當(dāng)大的距離。據(jù)估計,如藻類光合作用產(chǎn)氫效率提高到10%,則每天每平方米藻類可產(chǎn)氫9克分子,用5萬平方公里接受的太陽能,通過光合放氫工程即可滿足美國的全部燃料需要。

      太陽能-生物質(zhì)能轉(zhuǎn)換

      通過植物的光合作用,太陽能把二氧化碳和水合成有機物(生物質(zhì)能)并放出氧氣。光合作用是地球上最大規(guī)模轉(zhuǎn)換太陽能的過程,現(xiàn)代人類所用燃料是遠古和當(dāng)今光合作用固定的太陽能,目前,光合作用機理尚不完全清楚,能量轉(zhuǎn)換效率一般只有百分之幾,今后對其機理的研究具有重大的理論意義和實際意義。

      太陽能-機械能轉(zhuǎn)換

      20世紀(jì)初,俄國物理學(xué)家實驗證明光具有壓力。20年代,前蘇聯(lián)物理學(xué)家提出,利用在宇宙空間中巨大的太陽帆,在陽光的壓力作用下可推動宇宙飛船前進,將太陽能直接轉(zhuǎn)換成機械能??茖W(xué)家估計,在未來10~20年內(nèi),太陽帆設(shè)想可以實現(xiàn)。通常,太陽能轉(zhuǎn)換為機械能,需要通過中間過程進行間接轉(zhuǎn)換。

    4.3 ?太陽能貯存

      地面上接受到的太陽能,受氣候、晝夜、季節(jié)的影響,具有間斷性和不穩(wěn)定性。因此,太陽能貯存十分必要,尤其對于大規(guī)模利用太陽能更為必要。太陽能不能直接貯存,必須轉(zhuǎn)換成其它形式能量才能貯存。大容量、長時間、經(jīng)濟地貯存太陽能,在技術(shù)上比較困難。本世紀(jì)初建造的太陽能裝置幾乎都不考慮太陽能貯存問題,目前太陽能貯存技術(shù)也還未成熟,發(fā)展比較緩慢,研究工作有待加強。

      熱能貯熱

      1、顯熱貯存。利用材料的顯熱貯能是最簡單的貯能方法。在實際應(yīng)用中,水、沙、石子、土壤等都可作為貯能材料,其中水的比熱容最大,應(yīng)用較多。七八十年代曾有利用水和土壤進行跨季節(jié)貯存太陽能的報道。但材料顯熱較小,貯能量受到一定限制。

      2、潛熱貯存。利用材料在相變時放出和吸入的潛熱貯能,其貯能量大,且在溫度不變情況下放熱。在太陽能低溫貯存中常用含結(jié)晶水的鹽類貯能,如10水硫酸鈉/水氯化鈣、12水磷酸氫鈉等。但在使用中要解決過冷和分層問題,以保證工作溫度和使用壽命。太陽能中溫貯存溫度一般在100℃以上、500℃以下,通常在300℃左右。適宜于中溫貯存的材料有:高壓熱水、有機流體、共晶鹽等。太陽能高溫貯存溫度一般在500℃以上,目前正在試驗的材料有:金屬鈉、熔融鹽等。1000℃以上極高溫貯存,可以采用氧化鋁和氧化鍺耐火球。

      3、化學(xué)貯熱。利用化學(xué)反應(yīng)貯熱,貯熱量大,體積小,重量輕,化學(xué)反應(yīng)產(chǎn)物可分離貯存,需要時才發(fā)生放熱反應(yīng),貯存時間長。 真正能用于貯熱的化學(xué)反應(yīng)必須滿足以下條件:反應(yīng)可逆性好,無副反應(yīng);反應(yīng)迅速;反應(yīng)生成物易分離且能穩(wěn)定貯存;反應(yīng)物和生成物無毒、無腐蝕、無可燃性;反應(yīng)熱大,反應(yīng)物價格低等,目前已篩選出一些化學(xué)吸熱反應(yīng)能基本滿足上述條件,如Ca(OH)2的熱分解反應(yīng),利用上述吸熱反應(yīng)貯存熱能,用熱時則通過放熱反應(yīng)釋放熱能。但是,Ca(OH)2在大氣壓脫水反應(yīng)溫度高于500℃,利用太陽能在這一溫度下實現(xiàn)脫水十分困難,加入催化劑可降低反應(yīng)溫度,但仍相當(dāng)高。所以,對化學(xué)反應(yīng)貯存熱能尚需進行深入研究,一時難以實用。其它可用于貯熱的化學(xué)反應(yīng)還有金屬氫化物的熱分解反應(yīng)、硫酸氫銨循環(huán)反應(yīng)等。

      4、塑晶貯熱。1984年,美國在市場上推出一種塑晶家庭取暖材料。塑晶學(xué)名為新戊二醇(NPG),它和液晶相似,有晶體的三維周期性,但力學(xué)性質(zhì)象塑料。它能在恒定溫度下貯熱和放熱,但不是依靠固一液相變貯熱,而是通過塑晶分子構(gòu)型發(fā)生固-固相變貯熱。塑晶在恒溫44℃時,白天吸收太陽能而貯存熱能,晚上則放出白天貯存的熱能。 美國對NPG的貯熱性能和應(yīng)用進行了廣泛的研究,將塑晶熔化到玻璃和有機纖維墻板中可用于貯熱,將調(diào)整配比后的塑晶加入玻璃和纖維制成的墻板中,能制冷降溫。我國對塑晶也開展了一些實驗研究,但尚未實際應(yīng)用。

      5、太陽池貯熱。太陽池是一種具有一定鹽濃度梯度的鹽水池,可用于采集和貯存太陽能。由于它簡單、造價低和宜于大規(guī)模使用,引起人們的重視。60年代以后,許多國家對太陽池開展了研究,以色列還建成三座太陽池發(fā)電站。70年代以后,我國對太陽池也開展了研究,初步得到一些應(yīng)用。

      電能貯存

      電能貯存比熱能貯存困難,常用的是蓄電池,正在研究開發(fā)的是超導(dǎo)貯能。世界上鉛酸蓄電池的發(fā)明已有100多年的歷史,它利用化學(xué)能和電能的可逆轉(zhuǎn)換,實現(xiàn)充電和放電。鉛酸蓄電池價格較低,但使用壽命短,重量大,需要經(jīng)常維護。近來開發(fā)成功少維護、免維護鉛酸蓄電池,使其性能有一定提高。目前,與光伏發(fā)電系統(tǒng)配套的貯能裝置,大部分為鉛酸蓄電池。1908年發(fā)明鎳-銅、鎳-鐵堿性蓄電池,其使用維護方便,壽命長,重量輕,但價格較貴,一般在貯能量小的情況下使用。 現(xiàn)有的蓄電池貯能密度較低,難以滿足大容量、長時間貯存電能的要求。新近開發(fā)的蓄電池有銀鋅電池、 鉀電池、鈉硫電池等。某些金屬或合金在極低溫度下成為超導(dǎo)體,理論上電能可以在一個超導(dǎo)無電阻的線圈內(nèi)貯存無限長的時間。這種超導(dǎo)貯能不經(jīng)過任何其它能量轉(zhuǎn)換直接貯存電能,效率高,起動迅速,可以安裝在任何地點,尤其是消費中心附近,不產(chǎn)生任何污染,但目前超導(dǎo)貯能在技術(shù)上尚不成熟,需要繼續(xù)研究開發(fā)。

      氫能貯存

      氫可以大量、長時間貯存。它能以氣相、液相、固相(氫化物)或化合物(如氨、甲醇等)形式貯存。 氣相貯存:貯氫量少時,可以采用常壓濕式氣柜、高壓容器貯存;大量貯存時,可以貯存在地下貯倉、由不 漏水土層復(fù)蓋的含水層、鹽穴和人工洞穴內(nèi)。 液相貯存:液氫具有較高的單位體積貯氫量,但蒸發(fā)損失大。將氫氣轉(zhuǎn)化為液氫需要進行氫的純化和壓縮,正氫-仲氫轉(zhuǎn)化,最后進行液化。液氫生產(chǎn)過程復(fù)雜,成本高,目前主要用作火箭發(fā)動機燃料。 固相貯氫:利用金屬氫化物固相貯氫,貯氫密度高,安全性好。目前,基本能滿足固相貯氫要求的材料主要是稀土系合金和鈦系合金。金屬氫化物貯氫技術(shù)研究已有30余年歷史,取得了不少成果,但仍有許多課題有待研究解決。我國對金屬氫化物貯氫技術(shù)進行了多年研究,取得一些成果,目前研究開發(fā)工作正在深入。

      機械能貯存

      太陽能轉(zhuǎn)換為電能,推動電動水泵將低位水抽至高位,便能以位能的形式貯存太陽能;太陽能轉(zhuǎn)換為熱 能,推動熱機壓縮空氣,也能貯存太陽能。但在機械能貯存中最受人關(guān)注的是飛輪貯能。早在50年代有人提出利用高速旋轉(zhuǎn)的飛輪貯能設(shè)想,但一直沒有突破性進展。近年來,由于高強度碳纖維和玻璃纖維的出現(xiàn),用其制造的飛輪轉(zhuǎn)速大大提高,增加了單位質(zhì)量的動能貯量;電磁懸浮、超導(dǎo)磁浮技術(shù) 的發(fā)展,結(jié)合真空技術(shù),極大地降低了摩擦阻力和風(fēng)力損耗;電力電子的新進展,使飛輪電機與系統(tǒng)的能量交換更加靈活。所以,近來飛輪技術(shù)已成為國際上研究熱點,美國有20多個單位從事這項研究工作,已研制成貯能20kWh飛輪,正在研制5MWh~100MWh超導(dǎo)飛輪。我國已研制成貯能0.3kwh的小型實驗飛輪。 在太陽能光伏發(fā)電系統(tǒng)中,飛輪可以代替蓄電池用于蓄電。

    4.4 ?太陽能傳輸

      太陽能不象煤和石油一樣用交通工具進行運輸,而是應(yīng)用光學(xué)原理,通過光的反射和折射進行直接傳輸,或者將太陽能轉(zhuǎn)換成其它形式的能量進行間接傳輸。 直接傳輸適用于較短距離,基本上有三種方法:通過反射鏡及其它光學(xué)元件組合,改變陽光的傳播方向,達到用能地點;通過光導(dǎo)纖維,可以將入射在其一端的陽光傳輸?shù)搅硪欢?,傳輸時光導(dǎo)纖維可任意彎曲;采用表面鍍有高反射涂層的光導(dǎo)管,通過反射可以將陽光導(dǎo)入室內(nèi)。間接傳輸適用于各種不同距離。將太陽能轉(zhuǎn)換為熱能,通過熱管可將太陽能傳輸?shù)绞覂?nèi);將太陽能轉(zhuǎn)換為氫能或其它載能化學(xué)材料,通過車輛或管道等可輸送到用能地點;空間電站將太陽能轉(zhuǎn)換為電能,通過微波或激光將電能傳輸?shù)降孛?。太陽能傳輸包含許多復(fù)雜的技術(shù)問題,應(yīng)認(rèn)真進行研究,這樣才能更好地利用太陽能。

    5.1 ?太陽能光熱利用

      太陽輻射的熱能。我國有13億人口,3.5億個家庭,若每日每戶供應(yīng)60°C熱水100升,全年需6643億度電,幾乎用掉全國年發(fā)電量的一半,電費約為4000億元,費用極大。由于市場需求,太陽能熱水器是光熱利用最成功的領(lǐng)域。我國在太陽能熱水器的基礎(chǔ)理論研究、工藝材料研究、應(yīng)用研究、技術(shù)標(biāo)準(zhǔn)、制造水平、產(chǎn)品質(zhì)量等方面,總體處于國際先進水平,多個指標(biāo)國際領(lǐng)先。我國從事太陽能熱水器生產(chǎn)、銷售和安裝服務(wù)的企業(yè)有1000多家,熱水器保有量4000多萬平方米,太陽能熱水器產(chǎn)銷量和安裝面積居世界第一。2002年,太陽能熱水器產(chǎn)量約1000萬平方米,產(chǎn)值約110億元,產(chǎn)值超億元的已達十幾家。計劃到2005年,全國太陽能熱水器年生產(chǎn)能力達1100萬平方米,總保有量6400萬平方米,屆時這兩個數(shù)字可能會有突破。目前,太陽能熱水器主要有玻璃真空管式、熱管真空管式、平板式和少量悶曬式,其中玻璃真空管式占80%以上。今后我國政府、行業(yè)協(xié)會和相關(guān)企業(yè),在太陽能熱水器產(chǎn)業(yè)方面應(yīng)關(guān)注的重點是:(l)進一步規(guī)范市場,力保零投訴,確保行業(yè)持續(xù)健康發(fā)展;(2)政府加大支持力度,企業(yè)加強技術(shù)創(chuàng)新,提高行業(yè)整體裝備水平,培育一批具有國際竟?fàn)幜Φ钠髽I(yè);(3)加快太陽能與建筑一體化研究和示范工作,力爭盡早突破;(4)加強國際交流合作,積極引進國外資金和先進技術(shù)、擴大出日,共同推進我國太陽能熱水器產(chǎn)業(yè)發(fā)展:(5)大力搞好宣傳。教育、培訓(xùn)和信息發(fā)布工作。

      太陽能光熱利用,除太陽能熱水器外,還有太陽房、太陽灶、太陽能溫室、太陽能干燥系統(tǒng)、太陽能土壤消毒殺茵技術(shù)等,這些技術(shù)尤其在北方和西部應(yīng)用較廣,成效顯著。

      太陽能熱發(fā)電是太陽能熱利用的一個重要方面,這項技術(shù)是利用集熱器把太陽輻射熱能集中起來給水加熱產(chǎn)生蒸汽,然后通過汽輪機、發(fā)電機來發(fā)電。根據(jù)集熱方式不同,又分高溫發(fā)電和低溫發(fā)電。美國、日本、意大利等國在太陽能熱發(fā)電方面較領(lǐng)先,我國才剛剛起步。

      若用太陽能全方位地解決建筑內(nèi)熱水、采暖、空調(diào)和照明用能,這將是最理想的方案,太陽能與建筑(包括高層)一體化研究與實施,是未來太陽能開發(fā)利用的重要方向,也是整個太陽能行業(yè)做大的根本所在。雖然這方面現(xiàn)在還沒有實質(zhì)的進展,但因為有需求,在全世界的努力下,相信不久將會有突破。

    5.2 ?太陽能利用近期概況

      太陽能是各種可再生能源中最重要的基本能源,生物質(zhì)能、風(fēng)能、太陽能、海洋能、水能等都來自太陽能,廣義地說,太陽能包含以上各種可再生能源。太陽能作為可再生能源的一種,則是指太陽能的直接轉(zhuǎn)化和利用。通過轉(zhuǎn)換裝置把太陽輻射能轉(zhuǎn)換成熱能利用的屬于太陽能熱利用技術(shù),再利用熱能進行發(fā)電的稱為太陽能熱發(fā)電,也屬于這一技術(shù)領(lǐng)域;通過轉(zhuǎn)換裝置把太陽輻射能轉(zhuǎn)換成電能利用的屬于太陽能光發(fā)電技術(shù),光電轉(zhuǎn)換裝置通常是利用半導(dǎo)體器件的光伏效應(yīng)原理進行光電轉(zhuǎn)換的,因此又稱太陽能光伏技術(shù)。

      20世紀(jì)50年代,太陽能利用領(lǐng)域出現(xiàn)了兩項重大技術(shù)突破:一是1954年美國貝爾實驗室研制出6%的實用型單晶硅電池;二是1955年以色列Tabor提出選擇性吸收表面概念和理論并研制成功選擇性太陽吸收涂層。這兩項技術(shù)的突破,為太陽能利用進入現(xiàn)代發(fā)展時期奠定了技術(shù)基礎(chǔ)。

      7O年代以來,鑒于常規(guī)能源供給的有限性和環(huán)保壓力的增加,世界上許多國家掀起了開發(fā)利用太陽能和可再生能源的熱潮。1973年,美國制定了政府級的陽光發(fā)電計劃,198O年又正式將光伏發(fā)電列入公共電力規(guī)劃,累計投入達8億多美元。1992年,美國政府頒布了新的光伏發(fā)電計劃,制定了宏偉的發(fā)展目標(biāo)。日本在 7O年代制定了“陽光計劃”,1993年將“月光計劃”(節(jié)能計劃)、“環(huán)境計劃”、“陽光計劃”合并成“新陽光計劃”。德國等歐共體國家及一些發(fā)展中國家也紛紛制定了相應(yīng)的發(fā)展計劃。90年代以來聯(lián)合國召開了一系列有各國領(lǐng)導(dǎo)人參加的高峰會議,討論和制定世界太陽能戰(zhàn)略規(guī)劃、國際太陽能公約,設(shè)立國際太陽能基金等,推動全球太陽能和可再生能源的開發(fā)利用。開發(fā)利用太陽能和可再生能源成為國際社會的一大主題和共同行動,成為各國制訂可持續(xù)發(fā)展戰(zhàn)略的重要內(nèi)容。

      自“六五”計劃以來,我國政府一直把研究開發(fā)太陽能和可再生能源技術(shù)列入國家科技攻關(guān)計劃,大大推動了我國太陽能和可再生能源技術(shù)和產(chǎn)業(yè)的發(fā)展。

      20多年來,太陽能利用技術(shù)在研究開發(fā)、商業(yè)化生產(chǎn)、市場開拓方面都獲得了長足發(fā)展,成為世界快速、穩(wěn)定發(fā)展的新興產(chǎn)業(yè)之一。

    第一步:制作二氧化鈦膜

    先把二氧化鈦粉末放入研缽中與粘合劑進行研磨接著用玻璃棒緩慢地在導(dǎo)電玻璃上進行涂把二氧化鈦膜放入酒精燈下燒結(jié)10~15分鐘,然后冷卻

      第二步:利用天然燃料為二氧化鈦著色

    如右圖所示,把新鮮的或冰凍的黑梅、山梅、石榴籽或紅茶,用一大湯匙的稅進行擠壓,然后把二氧化鈦膜放進去進行著色,大約需要5分鐘,知道膜層變成深紫色,如果膜層兩面著色的不均勻,可以在放進去浸泡5分鐘,然后用乙醇沖洗,并用柔軟的紙輕輕地擦干。

      第三步:制作反電極

    電池需要正電極,當(dāng)然也需要反電極。正電極和反電極一樣,是由涂有導(dǎo)電的SnO2膜層構(gòu)成的,利用一個簡單的萬用表就可以判斷玻璃的那一面是可以導(dǎo)電的,利用手指也可以做出判斷,導(dǎo)電面較為粗糙。如突五所示,把非導(dǎo)電面標(biāo)上‘+’,然后用鉛筆在導(dǎo)電面上均勻地涂上一層石墨。

      第四步:加入電解質(zhì)

    利用含碘離子的溶液作為太陽能電池的電解質(zhì),它主要用于還原和再生燃料。如圖六所示,在二氧化鈦膜表面上滴加一到兩滴電解質(zhì)即可。


      第五步:組裝電池

    把著色后的二氧化鈦膜面朝上放在桌上,在膜上面滴一到兩滴含碘和碘離子的電解質(zhì),然后把反電極的導(dǎo)電面朝下壓在二氧化鈦膜上。把兩片玻璃稍微錯開,以便利用暴露在外面的部分作為電極的測試用。利用兩個夾子把電池夾住,這樣,你的太陽能電池就做成了。


      第六步:電池的測試

    在室外太陽光下,可以獲得開路電壓0.4V,短路電流1mA/cm2的太陽能電池

    ?

    ?

    Concern (0
    Commentary(1)
    Share
    曉娜張

    這么好呀?。。?/p>

    2008-12-30 12:29:39
    Popular
    Relevant
    Three Steps to Your Own Import Export Business
    author
    MariaCullen
    Reply:1 | Release time:2018-12-26 15:39:37
    "Perfect Files and Customs Data for Free" for old friends
    author
    Tradesns.com
    Reply:4 | Release time:2018-04-19 17:59:20
    Content marketing of foreign trade websites
    author
    BowlXu
    Reply:2 | Release time:2019-12-04 14:48:26
    How to develop customers efficiently
    author
    Leonardolee
    Reply:1 | Release time:2020-12-17 15:15:11
    Alibaba Group to take majority control over Alibaba Pictures
    author
    KateBrown
    Reply:0 | Release time:2018-12-12 15:12:01
    China vows to expedite 5G developmen
    author
    BowlXu
    Reply:0 | Release time:2020-04-26 09:29:34
    Good attitude and attitude in foreign trade
    author
    Leonardolee
    Reply:1 | Release time:2021-03-23 16:47:51
    Facebook's Foreign Trade Clearance Cheats
    author
    Leonardolee
    Reply:1 | Release time:2020-12-18 14:31:48
    Attitude determines success or failure
    author
    BowlXu
    Reply:0 | Release time:2019-11-18 10:01:50